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Abstract
We show the twisted Galilean invariance of the noncommutative parameter,
even in the presence of spacetime noncommutativity. We then obtain the
deformed algebra of the Schrödinger field in configuration and momentum
space by studying the action of the twisted Galilean group on the non-relativistic
limit of the Klein–Gordon field. Using this deformed algebra we compute
the two-particle correlation function to study the possible extent to which the
previously proposed violation of the Pauli principle may impact at low energies.
It is concluded that any possible effect is probably well beyond detection at
current energies.

PACS number: 11.10.Nx

1. Introduction

The studies of noncommutative (NC) geometry and its implications have gained considerable
importance in recent times as these studies are motivated both from string theory [1] and from
certain condensed matter systems such as the quantum Hall effect [2–4]. Here the canonical
NC structure is given by the following operator-valued spacetime coordinates,[

xµ
op, xν

op

] = iθµν. (1.1)

Instead of working with functions of these operator-valued coordinates, one can alternatively
work with functions of c-numbered coordinates provided one composes the functions through
the � product defined as [5]

α ∗θ β(x) =
[
α exp

(
i

2
←−
∂µθµν−→∂ν

)
β

]
(x),

θµν = −θνµ ∈ R, x = (x0, x1, . . . , xd).

(1.2)

0305-4470/06/309557+16$30.00 © 2006 IOP Publishing Ltd Printed in the UK 9557

http://dx.doi.org/10.1088/0305-4470/39/30/011
mailto:biswajit@bose.res.in
mailto:sunandan@bose.res.in
mailto:arindamg@bose.res.in
mailto:fgs@sun.ac.za
http://stacks.iop.org/JPhysA/39/9557


9558 B Chakraborty et al

The Poincaré group P or the diffeomorphism group D which acts on the NC spacetime R
d+1

defines a natural action on smooth functions α ∈ C∞(Rd+1) as

(gα)(x) = α(g−1x), (1.3)

for g ∈ P or D. However, in general

(gα) ∗θ (gβ) �= g(α ∗θ β), (1.4)

showing that the action of the group P or D is not an automorphism of the algebra Aθ (R
d+1),

unless one considers the translational subgroup. This violation of the Poincaré symmetry in
particular is accompanied by the violation of microcausality, spin statistics and the CPT
theorem in general [5, 7]. These results, which follow from the basic axioms in the
canonical (commutative) quantum field theory (QFT), are no longer satisfied in the presence
of noncommutativity in the manner discussed above. Besides, NC field theories are afflicted
with infrared/ultraviolet (IR/UV) mixing. It is however possible for some of these results
to still go through even after postulating weaker versions of the axioms used in the standard
QFT. For example, one can consider the proof of the CPT theorem given by Alvarez-Gaume
et al [8] where they consider the breaking of the Lorentz symmetry down to the subgroup
O(1, 1) × SO(2), and replace the usual causal structure, given by the light cone, by the
light-wedge associated with the O(1, 1) factor of the kinematical symmetry group. One can
also consider the derivation of CPT and spin-statistics theorems by Franco et al [9] where
they invoke only ‘asymptotic commutativity’, i.e. assuming that the fields to be commuting at
sufficiently large spatial separations.

As all these problems basically stemmed from the above-mentioned non-invariance (1.4),
it is desirable to look for some way to restore the invariance. Indeed, as has been discovered
by Chaichian et al [6] and Dimitrijevic et al [10, 11] (see also the prior work of Oeckl
[12]), this invariance is restored by introducing a deformed coproduct, thereby modifying the
corresponding Hopf algebra. Since then, this deformed or twisted coproduct has been used
extensively in the framework of relativistic quantum field theory, as this approach seems to be
quite promising.

Two interesting consequences follow from the twisted implementation of the Poincaré
group. The first is that there is apparently no longer any IR/UV mixing [13], suggesting
that the high and low energy sectors decouple, in contrast to the untwisted formulation. The
second striking consequence is an apparent violation of Pauli’s principle [14]. This seems to
be unavoidable if one wants to restore the Poincaré invariance through the twisted coproduct.
If there is no IR/UV mixing, one would expect that any violation of Pauli’s principle would
impact in either the high or low energy sector. Experimental observation at present energies
seems to rule out any effect at low energies; therefore, if this picture is a true description of
nature, we expect that any violation of the Pauli principle can only appear at high energies.
It does, therefore, seem worthwhile as a consistency check to investigate this question in
more detail and to establish precisely what the possible impact may be at low energies and
why it may not be observable. One of the quantities where spin statistics manifests itself
very explicitly is the two-particle correlation function. A way of addressing this issue would
therefore be to study the low temperature limit of the two-particle correlation function in a
twisted implementation of the Poincaré group. Since we are at low energies it would, however,
be sufficient to study the non-relativistic limit, i.e. the Galilean symmetry. We therefore need
to consider the question of whether the Galilean symmetry can also be restored by a suitable
twist of the coproduct. This is a non-trivial point that requires careful investigation, as the
Galilean algebra admits a central extension, in the form of mass, unlike the Poincaré case,
and the boost generator does not have a well-defined coproduct action. It may be recalled, in
this context, that the presence of spacetime noncommutativity spoils the NC structure under
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Galileo boost. This question is all the more important because of the observation made by
Bahns et at [15] that the presence of spacetime noncommutativity does not spoil the unitarity
of the NC theory. However, we show that the presence of spacetime noncommutativity in the
relativistic case does not have a well-defined non-relativistic (c → ∞) limit. Furthermore,
spacetime noncommutativity gives rise to certain operator ordering ambiguities rendering the
extraction of a non-relativistic field in the c → ∞ limit non-trivial.

This paper is organized as follows. We discuss mathematical preliminaries introducing the
concept of Hopf algebra and the deformed or twisted coproduct in section 2. Section 3 deals
with a brief review of the twisted Lorentz transformation properties of quantum spacetime in
subsection 3.1, as was discussed in [6, 16]. This is then extended to the non-relativistic case
in subsection 3.2. We then discuss briefly the non-relativistic reduction of the Klein–Gordon
field to the Schrödinger field in (2 + 1) dimensions in commutative space in section 4, which is
then used to obtain the action of the twisted Galilean transformation on the Fourier coefficients
in section 5. We eventually obtain the action of the twisted Galilean transformation on the
non-relativistic Schrödinger fields in section 6. In section 7 we discuss the implications of the
subsequent deformed commutation relations on the two-particle correlation function of a free
gas in two spatial dimensions. We conclude in section 8. Finally, we have added an appendix
where we have included some important aspects of the Wigner-Inönu group contraction in this
context (i.e. Poincaré → Galileo), which we have made use of in the main text.

2. Mathematical preliminaries

In this section we give a brief review of the essential results in [14] for the purpose of
application in later sections.

Suppose that a group G acts on a complex vector space V by a representation ρ. We
denote this action by

v → ρ(g)v (2.1)

for g ∈ G and v ∈ V . Then the group algebra G∗ also acts on V . A typical element of G∗ is∫
dg α(g)g, α(g) ∈ C, (2.2)

where dg is an invariant measure on G. Its action is

v →
∫

dg α(g)ρ(g)v. (2.3)

Both G and G∗ act on V ⊗C V , the tensor product of V ’s over C, as well. These actions
are usually taken to be

v1 ⊗ v2 → [ρ(g) ⊗ ρ(g)] (v1 ⊗ v2) = ρ(g)v1 ⊗ ρ(g)v2 (2.4)

and

v1 ⊗ v2 →
∫

dg α(g)ρ(g)v1 ⊗ ρ(g)v2, (2.5)

respectively, for v1, v2 ∈ V .
In Hopf algebra theory [17, 18], the action of G and G∗ on tensor products is defined by

the coproduct �0, a homomorphism from G∗ to G∗ ⊗ G∗, which on restriction to G gives a
homomorphism from G to G∗ ⊗ G∗. This restriction specifies �0 on all of G∗ by linearity.
Hence, if

�0 : g → �0(g) �0(g1)�0(g2) = �0(g1g2), (2.6)
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we have

�0

(∫
dg α(g)g

)
=

∫
dg α(g)�0(g). (2.7)

Suppose next that V is an algebra A (over C). As A is an algebra, we have a rule for taking
products of elements of A. This means that there is a multiplication map

m : A ⊗ A → A

α ⊗ β → m(α ⊗ β)
(2.8)

for α, β ∈ A, the product αβ being m(α ⊗ β).
It is now essential that �0 be compatible with m, so that

m((ρ ⊗ ρ)�0(g)(α ⊗ β)) = ρ(g)m(α ⊗ β). (2.9)

In the Moyal plane, the multiplication denoted by the map mθ is NC and depends on θµν . It
is defined by3

mθ(α ⊗ β) = m0
(
e− i

2 (i∂µ)θµν⊗(i∂ν)α ⊗ β
) = m0(Fθα ⊗ β), (2.10)

where m0 is the pointwise multiplication of two functions and Fθ is the twist element given by

Fθ = e− i
2 θµνPµ⊗Pν = e− i

2 (i∂µ)θµν⊗(i∂ν), Pµ = i∂µ. (2.11)

The twist element Fθ changes the coproduct to

�0(g) → �θ(g) = F̂−1
θ �0(g)F̂ θ (2.12)

in order to maintain compatibility with mθ , as can be easily checked. In the case of the
Poincaré group, if exp(iP · a) is a translation,

(ρ ⊗ ρ)�θ(e
iP ·a)ep ⊗ eq = ei(p+q)·aep ⊗ eq, (ep(x) = e−ip·x), (2.13)

while if 	 is a Lorentz transformation

(ρ ⊗ ρ)�θ(	)ep ⊗ eq = [
e

i
2 (	p)µθµν(	q)ν e− i

2 pµθµνqν
]
e	p ⊗ e	q. (2.14)

These relations are derived in [14]. Finally, let us mention the action of the coproduct �0 on
the elements of a Lie algebra A. The coproduct is defined on A by

�0(X) = X ⊗ 1 + 1 ⊗ X. (2.15)

Its action on the elements of the corresponding universal covering algebra U(P) can be
calculated through the homomorphism [19], i.e.

�0(XY ) = �0(X)�0(Y ) = XY ⊗ 1 + X ⊗ Y + Y ⊗ X + 1 ⊗ XY. (2.16)

One can also easily check that this action of the coproduct on the Lie algebra is consistent
with the action on the group element defined by

�0(g) = g ⊗ g. (2.17)

3 The signature we are using is (+, −,−, . . .).



Twisted Galilean symmetry and the Pauli principle at low energies 9561

3. Transformation properties of tensors under spacetime transformation

3.1. Lorentz transformation

To set the scene for the rest of the paper, we give a brief review of the Lorentz transformation
properties in the commutative case in this subsection. This, as we shall see, turns out to be
essential in understanding the action of the Lorentz generators on any vector or tensor field.
Consider an infinitesimal Lorentz transformation

xµ → x ′µ = xµ + ωµνxν, (3.1)

where ωµν is an infinitesimal constant (ωµν = −ωνµ). Under this transformation, any vector
field Aµ transforms as

Aµ → A′
µ(x ′) = Aµ(x) + ωµ

λAλ(x). (3.2)

Hence the functional change in Aµ(x) reads

δ0Aµ(x) = A′
µ(x) − Aµ(x)

= ωνλxν∂λAµ(x) + ωµνA
ν

= − i

2
ωνλJνλAµ, (3.3)

where Jνλ = Mνλ + Sνλ are the total Lorentz generators with Mµν and Sµν identified with
orbital and spin parts, respectively. This immediately leads to the representation of Mνλ,

Mνλ = i(xν∂λ − xλ∂ν) = (xνPλ − xλPν), Pλ = i∂λ. (3.4)

To find the representation of Sνλ, we make use of the relation i
2ωρλ(SρλA)µ = ωµνA

ν obtained
by comparing both sides of (3.3). This leads to

(Sαβ)µν = i(ηµαηνβ − ηµβηνα). (3.5)

It can now be easily checked that Mµν, Sµν and Jµν all satisfy the same homogeneous Lorentz
algebra SO(1, 3):

[Mµν,Mλρ] = i(ηµλMνρ − ηµρMνλ − ηνλMµρ + ηνρMµλ). (3.6)

Setting Aµ = xµ, where xµ represents a position coordinate of a spacetime point, yields

δ0xµ = − i

2
wνλ(Mνλ + Sνλ)xµ = 0 (3.7)

as expected, since the Lie derivative of the ‘radial’ vector field 	X = xµ∂µ w.r.t. the ‘rotation’
generators (3.4) Mµν vanishes, i.e. LMµν

	X = 0.
Now we observe that the change in xµ (not the functional change δ0xµ as in (3.3)) defined

by

δxµ = x ′
µ − xµ = ωµ

νxν (3.8)

can be identified as the action of Sνλ on xµ,

δxµ = ωµ
νxν = − i

2
ωνλ(Sνλx)µ, (3.9)

with the representation of Sνλ given in (3.5). Using (3.7), one can also obtain the action of
Mνλ on xµ,4

δxµ = − i

2
ωνλMνλxµ. (3.10)

4 Note that δAµ = A′
µ(x′) − Aµ(x) = ωµ

λAλ(x) is not the functional change and δxµ in (3.10) is obtained by
setting Aµ = xµ.
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One can generalize this to higher second-rank tensors fρσ (x) = xρxσ as

δ(xλxσ ) =
(

− i

2
wµνMµν

)
(xλxσ ), (3.11)

since we can write

Mµνfρσ = i(xµ∂ν − xν∂µ)fρσ

= i(fµσ ηνρ − fνσ ηµρ + fρνηµσ − fρµηνσ ), (3.12)

where we have made use of (3.4). This indeed shows the covariant nature of the transformation
properties of fρσ .

We now review the corresponding covariance property in the NC case under the twisted
coproduct of Lorentz generators [6, 16]. The issue of violation of the Lorentz symmetry in
noncommutative quantum field theories has been known for a long time, since the field theories
defined on a noncommutative spacetime obeying the commutation relation (1.1) between the
coordinate operators, where θµν is treated as a constant antisymmetric matrix, are obviously
not Lorentz invariant. However, it has been shown [6] that there exists a new kind of twisted
Poincaré symmetry under which quantum field theories defined on noncommutative spacetime
are still Poincaré invariant.

To generalize to the NC case, first note that the star product between two vectors xµ and
xν given as xµ � xν is not symmetric, unlike in the commutative case. One can, however, write
this as

xµ � xν = x{µ � xν} +
i

2
θµν, (3.13)

where the curly brackets { } denotes symmetrization in the indices µ and ν. This can be easily
generalized to higher ranks, showing that every tensorial object of the form (xµ � xν � · · · � xσ )

can be written as a sum of symmetric tensors of equal or lower rank, so that the basis
representation is symmetric. Consequently fρσ should be replaced by the symmetrized
expression f θ

ρσ = x{ρ � xσ } = 1
2 (xρ � xσ + xσ � xρ), and correspondingly the action of

the Lorentz generator should be applied through the twisted coproduct (2.12),

Mθ
µνf

θ
ρσ = Mθ

µνmθ(xρ ⊗ xσ ) = mθ(�θ(Mµν)(xρ ⊗ xσ ))

= i
(
f θ

µσ ηνρ − f θ
νσ ηµρ + f θ

ρνηµσ − f θ
ρµηνσ

)
. (3.14)

In the above equation, Mθ
µν denotes the usual Lorentz generator, but with the action of a

twisted coproduct. In [6], it was shown that Mθ
µν(θ

ρσ ) = 0, and

Mθ
µν

(
S2

t

) = 0; (
S2

t = xσ � xσ

)
, (3.15)

i.e. the antisymmetric tensor θρσ is twisted-Poincaré invariant.

3.2. Twisted Galilean invariance

In this subsection we extend the above twisted Poincaré result to the corresponding non-
relativistic case. To demonstrate the need for this, consider the Galilean boost transformation,

t → t ′ = t xi → x ′i = xi − vit, (3.16)

applied in the NC Galilean spacetime having the following NC structure:

[t, xi] = iθ0i; [xi, xj ] = iθ ij . (3.17)

The corresponding expression in the boosted frame is given by

[t ′, x ′i] = [t, xi] = iθ0i

[x ′i , x ′j ] = iθ ij + i(θ0ivj − θ0j vi).
(3.18)
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This shows that the NC structure in the primed frame does not preserve its structure unless
spacetime noncommutativity disappears, i.e. θ0i = 0. In this section we demonstrate that
even in the presence of spacetime noncommutativity the Galilean symmetry can be restored
through an appropriate twist. To do this we consider a tangent vector field 	A(x) = Aµ(x)∂µ

in Galilean spacetime. Under Galilean transformations (3.16),

Ai(x) → A′i (x ′) = ∂x ′i

∂xµ
Aµ(x) = Ai(x) − viA0(x)

A0(x) → A′0(x ′) = A0(x).

(3.19)

From (3.19) it follows that

δ0A
µ(x) = A′µ(x) − Aµ(x)

= ivj
(−it∂jA

µ(x) + iδµ

j A0(x)
)

= ivjKjA
µ(x), (3.20)

where

KjA
µ(x) = (−it∂jA

µ(x) + iδµ

j A0(x)
)

= −tPjA
µ(x) + iδµ

j A0(x). (3.21)

Setting Aµ(x) = xµ,5 we easily see that Kjx
µ = 0, from which we get

δxµ = ivj tPjx
µ = ivjK

(0)
j xµ, (3.22)

where K
(0)
j = tPj . This is the counterpart of (3.10) in the Galilean case. In other words,

here K
(0)
j plays the same role as Mµν in the relativistic case. Indeed, one can check that at the

commutative level it has its own coproduct action

K
(0)
j m(xµ ⊗ xν) = m

(
�0

(
K

(0)
j

)
(xµ ⊗ xν)

)
. (3.23)

Here K
(0)
j is clearly the boost generator K

(M)
j (see equation A.8 in the appendix) with M = 0.

Note that with M �= 0,K
(M)
j does not have the right coproduct action (3.23). This is also

quite satisfactory from the point of view that the noncommutativity of spacetime is an intrinsic
property and should have no bearing on the mass of the system inhabiting it. We also point out
another dissimilarity between the relativistic and non-relativistic case. In the relativistic case,
the generators Mµν (3.4) can be regarded as the vector field whose integral curve generates the
Rindler trajectories, i.e. the spacetime trajectories of a uniformly accelerated particle. On the
other hand, the vector field associated with the parabolic trajectories of a uniformly accelerated
particle in the non-relativistic case is given by KNR

i (A.5), which however cannot be identified
with the Galileo boost generator K

(M)
j (A.8) (see the appendix), unlike Mµν in the relativistic

case.
At the NC level the action of the Galilean generator should be applied through the twisted

coproduct

K
θ(0)
j mθ (x

µ ⊗ xν) = mθ

(
�θ

(
K

(0)
j

)
(xµ ⊗ xν)

)
. (3.24)

Using this and noting �θ

(
K

(0)
j

) = �0
(
K

(0)
j

)
we have

K
θ(0)
j mθ (x

µ ⊗ xν) = it
(
xµδν

j + δ
µ

j xν
)

⇒ K
θ(0)
j mθ (x

µ ⊗ xν − xν ⊗ xµ) = 0

⇒ K
θ(0)
j (θµν) = 0, (3.25)

5 Here we identify x0 to be just the time t, rather than ct .
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i.e. the antisymmetric tensor θµν is invariant under the twisted Galilean boost. Since the rest
of the Galileo generators have the same form as that of the Poincaré generators, discussed in
the previous section, this shows the complete twisted Galilean invariance of θµν .

4. Non-relativistic reduction in commutative space

In this section we discuss the non-relativistic reduction (c → ∞) of the Klein–Gordon field to
the Schrödinger field in 2+1 dimensions6, as this is used in the subsequent sections to derive
the deformed algebra of the Schrödinger field both in the momentum and in the configuration
space. The deformed algebra in the momentum space for the Klein–Gordon field has already
been derived in [14]. Therefore it is advantageous to consider the non-relativistic limit of such
a deformed algebra.

To facilitate the process of constructing the c → ∞ limit, we reintroduce the speed of
light ‘c’ in appropriate places from dimensional consideration, but we still work in the unit
h̄ = 1. We consider the complex Klein–Gordon field, satisfying the Klein–Gordon equation(

1

c2
∂2
t − ∇2 + m2c2

)
φ(x) = 0. (4.1)

This follows from the extremum condition of the Klein–Gordon action,

S =
∫

dt d2x
[

1

c2
φ̇�φ̇ − φ′�φ′ − c2m2φ�φ

]
. (4.2)

The Schrödinger field is identified from the Klein–Gordon field by isolating the
exponential factor involving rest mass energy and eventually taking the limit c → ∞. To that
end we set

φ(	x, t) = e−imc2t

√
2m

ψ(	x, t), (4.3)

which yields from (4.1) the equation

− 1

2m
∇2ψ = i

∂ψ

∂t
− 1

2mc2

∂2ψ

∂t2
. (4.4)

This reduces to the Schrödinger equation of a free positive energy particle in the limit c → ∞.
In this limit the action (4.2) also yields the corresponding non-relativistic action as

SNR =
∫

dt d2x ψ�

(
i∂0 +

1

2m
∇2

)
ψ. (4.5)

The complex scalar field φ(x) can be Fourier expanded as

φ(	x, t) =
∫

dµ(k)c[a(k)ek + b†(k)e−k], (4.6)

where dµ(k) = d2	k
2k0(2π)2 is the Lorentz invariant measure and ek = e−ik·x = e−i(Et−	k·	x). The

well-known equal time commutation relations between φ and �φ can now be used to find the
commutation relation between ak and a

†
k ,7

[a(k), a†(k′)] = (2π)2 2k0

c
δ2(	k − 	k′), (4.7)

6 The procedure of non-relativistic reduction holds for any spacetime dimension.
7 Note kµ = ( E

c
, 	k).
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and likewise for b(k). In order to get the Fourier expansion of the field in the non-relativistic
case, we substitute (4.3) in (4.6), which in the limit c → ∞ yields

ψ(	x, t) =
∫

d2	k
(2π)2

c̃(k)√
2m

ẽk =
∫

d2	k
(2π)2

c(k)ẽk, (4.8)

where ẽk = e−i |	k|2 t

2m ei	k·	x , c̃(k) = limc→∞ a(k) and c(k) = 1√
2m

c̃(k) are the Schrödinger
modes. As in (4.4) only the positive energy part survives in the c → ∞ limit, so this limit
effectively projects the positive frequency part. The commutation relation (4.7) reduces in the
non-relativistic limit (c → ∞) to

[c̃(k), c̃†(k′)] = (2π)22mδ2(	k − 	k′)

[c(k), c†(k′)] = (2π)2δ2(	k − 	k′).
(4.9)

From (4.8) and (4.9), we obtain

[ψ(	x, t), ψ †(	y, t)] = δ2(	x − 	y). (4.10)

5. Action of twisted Galilean transformation on Fourier coefficients

Let us consider the Fourier expansion of the relativistic scalar field φ(	x, t),

φ(	x, t) =
∫

dµ(k)cφ̃(k)ek, (5.1)

where we have deliberately suppressed the negative frequency part as it does not survive in
the non-relativistic limit c → ∞, as we have seen in the previous section. Considering the
action of the Poincaré group elements on φ, we get

ρ(	c)φ =
∫

dµ(k)cφ̃(k)e	ck =
∫

dµ(k)cφ̃
(
	−1

c k
)
ek (5.2)

ρ(eiP ·a)φ =
∫

dµ(k)c eik·aφ̃(k)ek. (5.3)

Thus the representation ρ̃ of the Poincaré group on φ̃(k) is specified by

(ρ̃(	c)φ̃)(k) = φ̃
(
	−1

c k
)

(ρ̃(eiP ·a)φ̃)(k) = eik·aφ̃(k).
(5.4)

Here homogeneous Lorentz transformations have been labelled by 	c. The corresponding
Galilean transformations will be labelled by 	∞ in the c → ∞ limit.

If χ is another scalar field, with Fourier expansion given by

χ(	x, t) =
∫

dµ(q)cχ̃(q)eq, (5.5)

the tensor product of the fields φ and χ is given by

φ ⊗ χ =
∫

dµ(k) dµ(q)c2φ̃(k)χ̃(q)ek ⊗ eq. (5.6)

Using (2.14) one obtains the action of the twisted Lorentz transformation on the above tensor
product of the fields

�θ(	c)(φ ⊗ χ) =
∫

dµ(k) dµ(q)c2φ̃
(
	−1

c k
)
χ̃

(
	−1

c q
)

e
i
2 kµθµνqν e− i

2 (	−1
c k)αθαβ (	−1

c q)β (ek ⊗ eq).

(5.7)
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Substituting (4.3) in the above equation, one can write the corresponding action of the twisted
Lorentz transformations on the tensor product of the fields ψ and ξ (here ξ is the counterpart
of ψ for the field χ as in (4.3)) as

�θ(	c)(ψ ⊗ ξ) =
∫

dµ(k) dµ(q)2mc2φ̃
(
	−1

c k
)
χ̃

(
	−1

c q
)

× e
i
2 kiθ

ij qj e− i
2 (	−1

c k)lθ
ln(	−1

c q)n e−2iO( 1
c2 ,...)

(ẽk ⊗ ẽq ). (5.8)

Note that we have set θ0i = 0 on the right-hand side of the above equation. The underlying
reason is that the substitution (4.3) can be carried out only in the absence of spacetime
noncommutativity (θ0i = 0) as this removes any operator ordering ambiguities in (4.3).
This should not, however, be regarded as a serious restriction as theories with spacetime
noncommutativity do not represent a low energy limit of string theory [7, 21].

Hence in the limit c → ∞, we can deduce the action of the twisted Galilean
transformations (	∞) on tensor products of the non-relativistic fields:

�θ(	∞)(ψ ⊗ ξ) =
∫

d2	k d2	q
(2π)4

ψ̃
(
	−1

∞ k
)
ξ̃
(
	−1

∞ q
)

e
i
2 mv1θ(k2−q2)(ẽk ⊗ ẽq ). (5.9)

Here we have considered a boost along the x1 direction with velocity v1 and ψ̃(k) =
limc→∞ φ̃(k), ξ̃ (q) = limc→∞ χ̃ (q).

From the above, one deduces the action of the twisted Galilean transformations (	∞) on
the Fourier coefficients of the non-relativistic fields

�θ(	∞)(ψ̃ ⊗ ξ̃ )(k, q) = ψ̃
(
	−1

∞ k
)
ξ̃
(
	−1

∞ q
)

e
i
2 mv1θ(k2−q2). (5.10)

One can now easily generalize the above result for the case of any arbitary direction of boost
as

�θ(	∞)(ψ̃ ⊗ ξ̃ )(k, q) = ψ̃
(
	−1

∞ k
)
ξ̃
(
	−1

∞ q
)

e
i
2 mθ 	v×(	k−	q). (5.11)

6. Quantum fields

In this section, we discuss the action of twisted Galilean transformation on non-relativistic
Schrödinger fields. A free relativistic complex quantum field φ of mass m can be expanded in
the NC plane (suppressing the negative frequency part) as

φ(	x, t) =
∫

dµ(k)cd(k)ek. (6.1)

This is just the counterpart of (4.6) where a(k) has been replaced by d(k).8

The deformation algebra involving d(k) has already been derived in [14]. In this paper,
we derive the deformation algebra for the non-relativistic case. The non-relativistic limit of
the complex Klein–Gordon field has already been discussed in the earlier section and the
expansion is the following:

ψ(	x, t) =
∫

d2	k
(2π)2

ũ(k)√
2m

ẽk =
∫

d2	k
(2π)2

u(k)ẽk; u(k) = 1√
2m

ũ(k), (6.2)

where ũ(k) = limc→∞ d(k).
Note that c̃(k), c(k) are the limits of the operators ũ(k), u(k) respectively in the limit

θµν = 0, and they satisfy relations (4.9). We now argue that such relations are incompatible

8 Note that a(k) = limθ→0 d(k).
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for θµν �= 0. Rather, u(k) and u†(k) fulfil certain deformed relations which reduce to (4.9) for
θµν = 0.

Suppose that

u(k)u(q) = T̃θ (k, q)u(q)u(k), (6.3)

where T̃θ is a C-valued function of k and q yet to be determined. The transformations of
ukul = (u ⊗ u)(k, l) and uluk are determined by �θ . Applying �θ on (6.3) and using (5.10),
we get the following9:

u
(
	−1

∞ k
)
u
(
	−1

∞ q
)

e
i
2 mvθ(k2−q2) = T̃θ (k, q)u

(
	−1

∞ q
)
u
(
	−1

∞ k
)

e
i
2 mvθ(q2−k2). (6.4)

Using (6.3) again on the left-hand side of (6.4), we get

T̃θ

(
	−1

∞ k,	−1
∞ q

) = T̃θ (k, q) e−imvθ(k2−q2). (6.5)

Note that this equation can also be obtained from the corresponding relativistic result [14]
in the c → ∞ limit provided one takes θ0i = 0 right from the beginning, otherwise
the exponential factor becomes rapidly oscillating in the c → ∞ limit, yielding no well-
defined non-relativistic limit. Thus in the absence of spacetime noncommutativity one has an
appropriate non-relativistic limit and the above-mentioned operator ordering ambiguities can
be avoided.

The solution of (6.5) is10

T̃θ (k, q) = η eikiθ
ij qj (i, j = 1, 2), (6.6)

where η is a Galilean-invariant function and approaches the value ±1 for bosonic and fermionic
fields respectively in the limit θ = 0.11 Therefore, substituting (6.6) in (6.3) we finally have

u(k)u(q) = η eikiθ
ij qj u(q)u(k). (6.7)

The adjoint of (6.7) gives

u†(k)u†(q) = η eikiθ
ij qj u†(q)u†(k). (6.8)

Finally the creation operator u†(q) carries momentum −q; hence, its deformed relation reads

u(k)u†(q) = η e−ikiθ
ij qj u†(q)u(k) + (2π)2δ2(k − q). (6.9)

Using (6.7) and (6.9), one can easily obtain the deformation algebra involving the non-
relativistic fields ψ(x) in the configuration space:

ψ(x)ψ(y) =
∫

d2x ′ d2y ′�θ(x, y, x ′, y ′)ψ(y ′)ψ(x ′); θ �= 0

ψ(x)ψ(y) = ηψ(y)ψ(x); θ = 0
(6.10)

ψ(x)ψ †(y) =
∫

d2x ′ d2y ′�θ(x, y, x ′, y ′)ψ †(y ′)ψ(x ′) + δ2(	x − 	y); θ �= 0

ψ(x)ψ †(y) = ηψ †(y)ψ(x) + δ2(	x − 	y); θ = 0
(6.11)

where

�θ(x, y, x ′, y ′) = η

(2π)2
exp

(
i

θ
[(x ′

1 − x1)(y2 − y ′
2) − (x ′

2 − x2)(y1 − y ′
1)]

)
. (6.12)

9 Without loss of generality, we consider the boost to be along the x1 direction for calculational convenience. Also
we set v1 = v.
10 Note that the non-relativistic form of the twist element also appears in [20].
11 The value of η can be actually taken to be ±1 for bosonic and fermionic fields for all θµν [14]. An exactly similar
non-relativistic reduction of the Dirac equation can also be done for the fermionic case.
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7. Two-particle correlation function

In this section we compute the two-particle correlation function for a free gas in 2+1
dimensions using the canonical ensemble, i.e. we are interested in the matrix elements
1
Z
〈r1, r2| e−βH |r1, r2〉, where Z is the canonical partition function and H is the non-relativistic

Hamiltonian. The physical meaning of this function is quite simple; it tells us what is the
probability of finding particle 2 at position r2, given that particle 1 is at r1, i.e. it measures
two-particle correlations. The relevant two-particle state is given by

|r1, r2〉 = ψ̂ †(r1)ψ̂
†(r2)|0〉

=
∫

dq1

(2π)2

dq2

(2π)2
e∗
q1

(r1)e
∗
q2

(r2)u
†(q1)u

†(q2)|0〉. (7.1)

The two-particle correlation function can therefore be written as

〈r1, r2| e−βH |r1, r2〉 =
∫

dk1 dk2 e− β

2m
(k2

1 +k2
2)|〈r1, r2|k1, k2〉|2, (7.2)

where we have introduced a complete set of momentum eigenstates |k1, k2〉.
Using (6.9) and noting that

|k1, k2〉 = u†(k1)u
†(k2)|0〉, (7.3)

we finally obtain

C(r) ≡ 1

Z
〈r1, r2| e−βH |r1, r2〉 = 1

A2

(
1 ± 1

1 + θ2

λ4

exp

(
−2πr2

/(
λ2

(
1 +

θ2

λ4

))))
, (7.4)

where A is the area of the system and λ is the mean thermal wavelength given by

λ =
(

2πβ

m

)1/2

; β = 1

kBT
(7.5)

and r = r1 − r2. The plus and the minus signs indicate bosons or fermions respectively.
Although this calculation was done in 2+1 dimensions, it is clear that the result generalizes
to higher dimensions by replacing θ2 by an appropriate sum of (θ ij )2. The conclusions made
below, based on the general structure of the correlation function, will therefore also hold in
higher dimensions.

As expected this result reduces to the standard (untwisted) result in the limit θ → 0 [22].
Furthermore, it is immediately clear that when λ � √

θ , i.e. in the low temperature limit, there
is virtually no deviation from the untwisted result as summarized in figure 1. This is reassuring
as it indicates that the implied violation of Pauli’s principle will have no observable effect at
current energies. Indeed, keeping in mind that

√
θ is probably at the Planck length scale any

deviation will only become apparent at very high temperatures, where the non-relativistic limit
is invalidated. Note, however, that in contrast to the untwisted case the correlation function for
fermions does not vanish in the limit r → 0. Thus, there is a finite probability that fermions
may come very close to each other. Once again this probability is determined by θ and thus very
small, which probably renders it undetectable. Due to this property of the twisted correlation
function one also expects that the equation of state of a free fermion gas will be much softer at
high densities than the untwisted one. This is most clearly seen from the exchange potential
V (r) = −kBT log C(r) [22] shown in figure 2. This clearly demonstrates the change from
a hardcore potential in the untwisted case to a soft core potential in the twisted case. This
may have possible astrophysical implications, although it is dubious that these densities are
even reachable in this case. In any case the assumptions we made here are certainly violated
at these extreme conditions and a much more careful analysis is required to investigate the
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λ4
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V

Figure 1. Two-particle correlation function C(r). The upper two curves are the bosonic case and
the lower curves the fermionic case. The solid line shows the twisted result and the dashed line the
untwisted case. This is shown for a schematic value of θ

λ2 = 0.3. The separation r is measured in
units of the thermal length λ.

0 0.5 1 1.5 2
r

0

2

4

6

V
(
r
)

Figure 2. Exchange potential V (r) measured in units of kBT . The irrelevant additive constant has
been set zero. The upper two curves are the fermionic case and the lower curves the bosonic case.
The solid line shows the twisted result and the dashed line the untwisted case. This is shown for a
schematic value of θ

λ2 = 0.3. The separation r is measured in units of the thermal length λ.

high temperature and high density consequences of the twisted statistics. Another interesting
point to note from figure 2 is that the twisted statistics has, even at these unrealistic values of
θ
λ2 , virtually no effect on the bosonic correlation function at short separation. This probably
suggests that there will be no observable effect in Bose–Einstein condensation experiments.
These results may also have interesting consequences for condensed matter systems such
as the quantum Hall effect where the NC parameter is related to the inverse magnetic
field.

8. Conclusions

We have shown that the NC parameter is twisted Galilean invariant even in the presence of
spacetime noncommutativity. This is significant in view of the fact that the usual Galilean
symmetry is spoiled in the presence of spacetime noncommutativity.
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We have derived the deformed algebra of the Schrödinger field in configuration and
momentum space. This was done by studying the action of the twisted Galilean symmetry on
the Schrödinger field as obtained from a non-relativistic reduction of the Klein–Gordon field.
Here we had to consider the absence of any spacetime noncommutativity as, otherwise one
cannot define a proper non-relativistic limit.

The possible consequences of this deformation in terms of a violation of the Pauli principle
was studied by computing the two-particle correlation function. The conclusion is that any
possible effect of the twisted statistics only shows up at very high energies, while the effect at
low energies should be very small, consistent with current experimental observations. Whether
this effect will eventually be detectable through some very sensitive experiment is an open,
but enormously interesting and challenging question.
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Appendix. A brief derivation of the Wigner-Inönu group contraction of the Poincaré
group to the Galilean group

Here we summarize the well-known Wigner-Inönu group contraction from the Poincaré to
Galilean algebra in order to highlight some of the subtleties involved, as these have direct
bearings on the issues discussed in section 3.1.

To begin with let us consider a particle undergoing uniform acceleration ‘a’, along the
x direction, measured in the instantaneous rest frame of the particle. A typical spacetime
Rindler trajectory is given by the hyperbola

x2 − c2t2 = ρ2, (A.1)

so that the acceleration A(t) w.r.t. the fixed observer with the above associated coordinates
(t, x) measured at time t is

A(t) = dV (t)

dt
= c2

x

(
ρ2

x2

)
.

Since the frame (x, t) appearing in (A.1) coincides with that of the fixed observer at time
t = 0, we must have

⇒ a = A(t = 0) = c2

ρ
, (A.2)

where ρ is the distance measured at that instant from the origin. To take the non-relativistic
limit, we have to take both c → ∞ and ρ → ∞ such that c2

ρ
= a is held constant. For

example, the corresponding non-relativistic expression x̄ for the distance travelled by the
particle in time t is obtained by identifying

x̄ = lim
c→∞,ρ→∞ (x − ρ) = 1

2at2, (A.3)

which reproduces the standard result.
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Now let us consider the Lorentz generator along the x direction M01 = i(x0∂1 − x1∂0).
This can be rewritten in terms of x̄ using (A.3),

M01 = ic

(
t

∂

∂x̄
+

1

a

(
1 +

x̄

ρ

)
∂

∂t

)
= cK1. (A.4)

Note that K1 by itself does not have any c dependence; the non-relativistic limit of K1 can
thus be obtained by just taking the limit ρ → ∞, which yields

KNR
1 = lim

ρ→∞ K1 = t
∂

∂x̄
+

1

a

∂

∂t
. (A.5)

Although this vector field indeed generates the integral curve in the t, x̄ plane which is a
parabola given by (A.3), it cannot be identified with the Galileo boost generator because[

KNR
i , KNR

j

] ∼ (Pi − Pj ). (A.6)

The Galilean algebra on the other hand is obtained by taking the limit c → ∞ of the
commutators involving boost in the following way:

[K̄1, K̄2] = lim
c→∞

1

c2
[M01,M02] = lim

c→∞
1

c2
M12 = 0

[P1, K̄1] = lim
c→∞

1

c
[P1,M01] = lim

c→∞
1

c2
P0 = iM

[K̄1, J ] = lim
c→∞

1

c
[M01,M12] = iK̄2,

(A.7)

where M is identified as the mass. The rest of the commutators have the same form as that
of the Poincaré algebra. This is nothing but the famous Wigner-Inönu group contraction,
demonstrated here in construction of the Galilean algebra as a suitable limit of the Poincaré
algebra.

A simple inspection, at this stage, shows the following form of the Galileo boost
generators:

K̄i = K
(M)
i = it

∂

∂x̄i

+ Mx̄i (A.8)

Clearly the rest of the generators in the Galilean algebra have the same form as the Poincaré
algebra. For completeness we enlist the full Galilean algebra in 2+1 dimensions:[

K
(M)
i ,K

(M)
j

] = [Pi, Pj ] = [Pi,H ] = [J,H ] = 0[
Pi,K

(M)
j

] = iδijM

[Pi, J ] = iεijPj[
K

(M)
i , J

] = iεijK
(M)
j

[Pi,M] = [H,M] = [J,M] = [
K

(M)
i ,M

] = 0.

(A.9)

Finally note that here the mass M plays the role of central extension of the centrally
extended Galilean algebra.
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